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The mechanical behaviors of polycrystalline solids are determined by the interplay between phenomena
governed by two different thermodynamic temperatures: the configurational effective temperature that controls
the density of dislocations, and the ordinary kinetic-vibrational temperature that controls activated depinning
mechanisms and thus deformation rates. This paper contains a review of the effective-temperature theory and its
relation to conventional dislocation theories. It includes a simple illustration of how these two thermal effects
can combine to produce a predictive theory of spatial heterogeneities such as shear-banding instabilities. Its main
message is a plea that conventional dislocation theories be reformulated in a thermodynamically consistent way
so that the vast array of observed behaviors can be understood systematically.
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I. INTRODUCTION

The mechanical properties of solids—their deformability
and modes of failure—are surely among the central issues
in materials research. After more than half a century of
work in this field, however, materials scientists still have no
first-principles, predictive theory of phenomena as basic as
dislocation-induced strain hardening or fracture toughness. My
purpose here is to present a critical analysis of this situation
and to argue that recent developments provide an opportunity
for significant progress.

Dislocation-mediated plastic deformations are enormously
complex phenomena when observed in microscopic detail. The
dislocations are line defects of various kinds that are driven
to move through polycrystalline solids in complicated ways as
they produce irreversible structural changes. Their motions
are impeded by crystalline defects, grain boundaries, and,
especially, by other dislocations. In two recent papers [1,2],
my colleagues and I have shown that we can solve several of
the most important outstanding dislocation problems without
making direct reference to most of these complications. In
fact, however, these complications are underlying ingredients
of our calculations; but, by starting with basic ideas such as
scaling and dimensional analysis, and using the principles of
statistical thermodynamics, we have had no need to model
those mechanisms in detail in order to understand many of the
main phenomena.

My topic in this paper is thermal effects. I start by reviewing
the elementary but currently unconventional idea that, when
driven out of mechanical equilibrium, the configurational
degrees of freedom of a solid generally acquire an effective
temperature that differs from the ambient temperature. Just
understanding the meaning of this effective temperature is
enough to tell us that correct theories of solid deformation
must differ from those that continue to be taken seriously in
this field.

The effective temperature provides basic information about
the density of structural flow defects, including both dislo-
cations in crystals and shear-transformation zones (STZ’s) in
amorphous materials [3]. It is relevant to situations in which
the solid is deformed by external forces so that energy and
entropy flow through it, and so that the population of flow
defects falls out of equilibrium with the thermal background.
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Ordinary thermal fluctuations are too weak by many orders of
magnitude to create or annihilate dislocations, or even STZ’s.
Nevertheless, they determine sensitively the rates at which
dislocations are depinned from each other or from structural
defects, and thus they are especially effective in controlling
rates of deformation.

In what follows, I explore ways in which these two different
kinds of thermodynamic effects combine to determine the
nonequilibrium dynamics of solids. I focus on the interplay
between dislocation-induced hardening and thermally induced
softening that produces shear-banding instabilities and the like.
In this process, I challenge some long-standing assumptions
in this field.

II. THE EFFECTIVE TEMPERATURE

So far as I can see, there is nothing hypothetical or
controversial about the effective temperature, especially not
for a deforming solid with dislocations. To an extremely
good approximation, the atomic configurational degrees of
freedom of a polycrystalline solid are decoupled from the
kinetic-vibrational degrees of freedom. These two subsystems
do exchange energy with each other when groups of atoms un-
dergo irreversible configurational rearrangements. But, unless
the solid is near its melting point, those rearrangements are
extremely infrequent on microscopic time scales. Thus, it is
essential to begin any theoretical description of such a system
by focusing on the configurational part. (See [4] for a more
systematic discussion than is presented here.)

For the moment, consider only steady-state, dislocation-
mediated shear flow. Also assume that, on average, we need
to consider only edge dislocations moving on simple glide
planes. Denote the energy of the configurational subsystem
by Uc(Sc,p). Here, p is the areal density of dislocations
or, alternatively, the total length of dislocation lines per unit
volume; and S¢(Uc, p) is the entropy computed by counting
the number of atomic configurations, including the number of
arrangements of dislocations, at fixed values of U¢ and p.

The dislocations are driven by external forces to undergo
chaotic, stochastic motions; that is, they explore statistically
significant parts of their configuration spaces. According to
Gibbs, this configurational subsystem must be maximizing its

©2016 American Physical Society


https://doi.org/10.1103/PhysRevE.94.063004

J. S. LANGER

entropy Sc; that is, it must be at or near its state of maximum
probability. It is doing this at a value of the energy U¢ that is
determined by the balance between the input power and the
rate at which energy is dissipated to the kinetic-vibrational
subsystem, which serves here as the thermal reservoir. The
method of Lagrange multipliers tells us to find this most
probable state by maximizing the function S¢ — XU¢, and
then finding the value of the multiplier X for which U¢ has
the desired value. Define X to be proportional to the inverse
of the effective temperature Ty, i.e., 1/ X = kgTer = x. Thus,
the system finds a minimum of the free energy

Fe=Uc— xSc 2.1
and
aU¢
= —. 2.2
X 95 (2.2)

We can already draw some interesting conclusions. First,
note that minimizing F¢ in Egs. (2.1) and (2.2) deter-
mines the steady-state dislocation density ps as a function
of the steady-state effective temperature xy. For example,
in the simplest approximation, the p dependence of Uc/V has
the form ep p, where V is the volume and e, is a characteristic
energy of a dislocation. Similarly, the p dependence of S¢/V
has the form — p In p 4+ p. Thus, minimizing F¢ produces
the usual Boltzmann formula, pg o< exp (—ep/xss). An ap-
preciable density of dislocations requires a value of y that is
comparable to e p, which is enormously larger than the ambient
thermal energy kT . Moreover, this expression for py is an
increasing function of . At larger densities, the dislocations
become increasingly entangled with each other, and the system
becomes harder in the sense that the stress required for
deformation becomes larger. Thus, this rudimentary statistical
argument immediately predicts strain hardening.

Next, note that y, is a measure of the configurational
disorder in the material, in direct analogy to the way in which
the ordinary temperature determines the strength of energy and
density fluctuations. As such, s must be a function primarily
of the plastic shear rate ¢P!. which we can think of as the rate at
which the system is being “stirred,” i.e., the rate at which the
atoms are being caused to undergo rearrangements. If this shear
rate is so slow that the system relaxes between rearrangement
events, then the steady state of disorder is determined only by
the number of atomic rearrangements and not by the rate at
which they occur. That is, x5 must be some nonzero constant
below a characteristic shear rate whose value is determined by
atomic time scales. It follows that p is also a constant and that
the steady-state stress increases only very slowly over a wide
range of low to moderate shear rates. This is what is observed
experimentally.

This situation changes when the system is being driven
fast enough that it does not have time to relax between
rearrangement events. Under those conditions, xss, 0Oss, and
the driving stress all increase with increasing shear rate. In
[1], we showed that a simple, quantitative version of these
arguments, using just a few physically motivated parameters,
produces an accurate fit to curves of stress versus strain rate
for Cu at temperatures 100, 300, and 1173 K, for shear rates
starting at 1073 s~! and going all the way up through the
strong-shock regime to 10'2 s~!. The theory that produces
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these results is based directly on the effective-temperature
analysis outlined above. It adds only the thermally activated
depinning mechanism to be described in the next section of
this paper, and essentially nothing else.

In view of these arguments and of other calculations re-
ported in [1,2], it seems to me that attempts to develop a theory
of dislocation-mediated plasticity without using the effective
temperature are as futile as trying to describe the behavior
of simple gases without using the ordinary temperature. Yet
this is exactly what has been done by mainstream dislocation
theorists ever since the groundbreaking work of Taylor and
Orowan in the 1930s. For example, see recent reviews by
Armstrong et al. [5] and Gray [6]. The lack of a thermodynamic
foundation for their analyses has required these theorists to
make a wide range of phenomenological assumptions.

For example, it is generally asserted in the dislocation-
theory literature that flow stresses at high strain rates are
largely due to viscous forces impeding the motions of free
dislocations. So far as I know, however, there never has been
a careful test of this assertion, nor any direct experimental
observation to support it. In [1], we argued that viscous forces
could be important only in the opposite limit of small strain
rates and small dislocation densities, where the time taken for
a freely moving dislocation to traverse the distance between
pinning sites might be greater than the pinning time. At higher
strain rates, we showed that the effective-temperature analysis
explains the observed behaviors naturally and simply.

Another example that I have found especially interesting is
the rate-hardening anomaly in Cu described by Follansbee and
Kocks in 1988 [7]. Here, curves of stress versus strain rate, at
four different fixed values of the strain, were observed to rise
abruptly at a strain rate of about 10* s~!. Various investigators
have tried to fit these curves by phenomenological power
laws, often ignoring the fact that their predicted stresses would
exceed the measured steady-state stresses at higher strain rates
[8]. In his recent review of high-strain-rate deformation, Gray
[6] asserts that this anomaly and related observations “support
a... link between substructure evolution and rate-sensitive
behavior.”

However, the thermodynamics-based equations of motion
[see [2] and Egs. (3.1)—(3.3) and (3.8) below] tell us that
this rate-hardening anomaly is a transient phenomenon. It is
controlled by a single rate factor that determines the fraction of
the externally applied power that is converted into the energy of
new dislocations. By adding to this conversion factor a single
term, linear in the strain rate with a constant coefficient, and
possibly identifiable as a grain-size effect, I was able to fit all
of the anomalous data and confirm that my results also make
sense at higher strain rates. There is no hint of “substructure
evolution” in this theory. But there is testable physical content
in it.

Gray’s remark about the relevance of substructures is
an accurate indication of a general aspect of this situation.
Many different structural changes are observed in connection
with deformations of polycrystalline solids. Examples include
twinning, grain-boundary sliding, dynamic recrystallization,
formation of cellular dislocation patterns, and the like. Some-
times it is asserted that these structural changes are the primary
mechanisms that cause deformations to take place, sometimes
that they are quantitatively relevant but not essential features
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of complex dynamic processes, and sometimes that they are
dynamically irrelevant side effects. I do not pretend to be able
to distinguish between these possibilities in all cases. But I
cannot imagine trying to answer such questions without using
effective temperature thermodynamics.

The formation of dislocation cells is a good example of
the relevance of the effective temperature to these theoretical
uncertainties. We know from direct observations that, at least
during the early stages of strain hardening, dislocations tend
to cluster, forming cellular patterns with low-density interiors
and high-density cell walls. The apparent driving force for this
clustering effect is the elastic energy of interaction between
dislocations, which adds a term proportional to —In p to the
energy ep. In Eq. (2.1), this means that both the elastic energy
and the entropy decrease logarithmically as the dislocations
are brought closer together. Which of the two effects is
dominant depends on the effective temperature x. If x is
small, as it might be for well-annealed samples undergoing
slow deformation, then the elastic energy is dominant and
cells may form. On the other hand, if x becomes large, as
must happen during later stages of hardening, then the entropy
in Eq. (2.1) may be dominant, and cellular structures would no
longer be thermodynamically stable. I cannot claim (yet) to be
able to predict the conditions under which cellular dislocation
patterns will form, or whether they play any appreciable role
in determining the mechanical behaviors of solids. But the
effective temperature surely will have to play a central role in
making such predictions.

III. EQUATIONS OF MOTION

I need now to restate, and comment upon, the
thermodynamics-based equations of motion derived in [1,2].
For the moment, it will be sufficient to consider just a strip
of material undergoing uniform simple shear at strain rate ¢,
under a uniform shear stress o . For further simplicity, assume
that compressional strains and stresses are negligible. The
dynamical variables are the stress o, the dislocation density p,
and the dimensionless effective temperature ¥ = x/ep.

The equation of motion for o is

G = u(€ — éM, (3.1

where u is the shear modulus and € is the total, elastic plus
plastic, strain rate. I assume that the elastic strains remain
small, so that these strain rates are simply additive.

The equation of motion for the dislocation density p is

i aépl[l
p=r,—|1—
pVD

}, pss(R) = e X (3.2)

Pss(X)
where yp = ep/L is the dislocation energy per unit length,
L is a characteristic dislocation length, and b is an atomic
length scale proportional to the length of the Burgers vector.
This equation is a statement of energy conservation for the
dislocations, consistent with detailed balance.

The prefactor multiplying the quantity in square brackets
in Eq. (3.2), proportional to the input power o€P!, is the
rate at which new dislocations are formed. Therefore, the
dimensionless coefficient «, is the fraction of that power that
is converted to the energy of dislocations. It is the term that
becomes linearly strain-rate-dependent in order to account for
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the rate-hardening anomaly mentioned in Sec. II. This is one
place in the theory where a wide variety of system-specific
physical mechanisms may be operative, e.g., Frank-Read
sources, grain-boundary effects, and the like. We do not need
detailed theories of those mechanisms in order to use this
equation in predictive calculations. On the other hand, by
measuring k, as a function of the strain rate and various
material parameters, we should be able to learn a great deal
about those mechanisms.

The second term in the square brackets in Eq. (3.2) is
proportional to the rate at which dislocations are annihilated,
in accord with the second law as discussed in [2]. Again, we
need no specific models of dislocation annihilation in order
to write this term; it is determined entirely by the statistical
thermodynamic relation between steady-state annihilation
and creation rates. Note that I am using the Boltzmann
approximation described in Sec. II to write the steady-state
dislocation density pgs as a function of ¥. Note also that I
am neglecting elastic interactions between dislocations, which
would modify the various factors ep (as well as the equations
themselves). My strategy, as always, is to see how far we can
go with the simplest nontrivial assumptions.

The equation of motion for the effective temperature is

cefri = o€ |:1 - ~L:|
XSS

(3.3)
This is a statement of the first law of thermodynamics for
the configurational subsystem. On the left-hand side of this
equation, cef = epX0Sc/0) is the effective specific heat.
The second term in the square brackets on the right-hand
side is proportional to the rate at which heat flows from the
configurational to the thermal (kinetic-vibrational) degrees
of freedom. In writing Eq. (3.3), I have omitted a term
proportional to p that accounts for energy storage in the form
of dislocations, but which often turns out to be negligible (see
[2]). Again, for the present purposes, I am opting for simplicity.

So far as I know, Egs. (3.2) and (3.3) have not appeared
in the dislocation theory literature before their publication in
[1], but they are just statements of the first and second laws of
thermodynamics with little specific relevance to dislocations.
Their counterparts in the STZ theory of amorphous plasticity
are essentially identical to what is shown here. Of course,
Eq. (3.3) pertains to the effective temperature, which has no
counterpart in conventional dislocation theory. But Eq. (3.2)
replaces the “storage recovery equation” of Kocks and Meck-
ing [9], which was argued in [1] to be incorrect.

To close Eqgs. (3.1)—(3.3), we need a dislocation-specific
expression for the plastic strain rate €P'. Here is another place
where the theory in Ref. [1] differs markedly from the rest of
the conventional literature. But it is here that this theory is most
directly a mathematical interpretation of Cottrell’s description
of the role of dislocations in strain hardening [10]. In his words:
“... dislocations are flexible lines, interlinked and entangled,
so that the entire system behaves more like a single object
of extreme structural complexity and deformability... a bird’s
nest.” He also noted that “the behavior of the whole system is
governed by that of weakest links.” I think that he was entirely
correct, and that the only negative aspect of his remarks is
that he offered them as an explanation of why he thought that
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strain hardening was an unsolvable physics problem. In that, I
believe he was wrong.

As argued in [1], Cottrell’s picture can be made precise by
using dimensional arguments that would have been familiar to
Orowan and Taylor. The weak links in Cottrell’s bird’s nest are
the places where dislocations are pinned to each other. These
links are weak in the sense that they can be broken by ordinary
thermal fluctuations.

The depinning theory in [1] starts with Orowan’s dimen-
sional relation between ¢€P!, p, and the average velocity of the
dislocations v:

éPl = pbu. (3.4)

If a depinned dislocation segment moves a distance of order
¢ = 1/,/p between pinning sites, then v ~ £/7p, where 1/7p
is a thermally activated depinning rate given by

1 e Ur@/ksT

Tp 70

(3.5)

where 1 is a microscopic time, of the order of 10712 .
The activation energy Up must be a decreasing function
of the stress o. Again on dimensional grounds, ¢ must be
expressed in units of some physically relevant stress, which
seems naturally to be the Taylor stress,

b/
or(p) =1 — = pr b /p. (3.6)

L
Here, b’ is the displacement needed for depinning, b’/£ is the
corresponding shear strain, and o7 is the shear stress needed to
achieve that strain. Generally, the reduced modulus p7 turns
out to be of the order of 0.1x. In [1], we assumed that

Up(o) = kgTpe 7/77?, (3.7

where kgTp is a pinning energy. The exponential function in
Eq. (3.7) has no special significance; in all applications so far,
its argument o /o varies by no more than a factor of 2 or 3.
The resulting formula for the dimensionless strain rate ¢ is

q(0,p,0) = 1™ = b\/p exp [—% e‘“/“T:|, (3.8)
where 0 = T/Tp. For very small or negative values of
the stress, this formula must be antisymmetrized in o, but
ordinarily that will not be necessary.

Using the unsymmetrized formula in Eq. (3.8), we can solve
for o as a function of ¢, p, and 6:

T () e[ ()]
=In({=)—In|In[— )| =v(p,q,0). (3.9
or(p) 0 q

The quantity v(p,q,0) is a very slowly varying function of
its arguments, consistent with the observation that the Taylor
stress is a good approximation to the true stress in most
circumstances, and also with the observation that steady-state
rate hardening is generally quite slow. It is this formula,
with p = p, that produces agreement with experiment for
steady-state stresses over 15 decades of strain rate as shown in
[1] and mentioned here in Sec. II. Conversely, this formula tells
us that the strain rate g(o,p,0) is a highly sensitive function
of its arguments, especially—for the present purposes—the
dimensionless temperature 6.
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IV. THERMAL SOFTENING

A key issue that cannot be resolved without a first-principles
theory of dislocation dynamics is the role of ordinary thermal
fluctuations in enabling failure modes such as shear localiza-
tion and fracture. Clearly, the formation of dislocations is a
hardening mechanism. The occurrence of shear localization
implies that there must be a competing softening mechanism,
which generally has been assumed to be a thermal instability.
A local increase in strain rate produces a local increase in
temperature that, in turn, locally softens the material and thus
further increases the strain rate.

Many shear-banding analyses have appeared in the litera-
ture in recent decades. (For example, see [11,12].) All of these
use phenomenological models of strain hardening and thermal
softening that I find unrealistic for reasons stated in Sec. II.
Moreover, the assumption that thermal softening is the primary
driver of localization instabilities has been challenged by
Rittel and co-workers [13,14], who show credible experimental
evidence that dynamic recrystallization (DRX) occurs in
the neighborhood of adiabatic shear bands before the main,
heat-generating shear band appears. Rittel argues, therefore,
that the primary softening mechanism may be DRX rather than
a conventional heating process.

As a first step toward a study of these issues, it would
be straightforward to use the equations of motion shown
in Sec. III, supplemented by an equation of motion for the
dimensionless temperature 6, in a shear-banding theory such as
that described by Manning et al. [15] for amorphous materials.
That is, we could consider an infinitely long strip of width W
in the x-y plane, driven in simple shear by constraining it to
be fixed along the x axis, y = 0, and to be moving at constant
speed vy along its upper edge at y = W. As in [15], we could
neglect dilatational deformations, and assume that the shear
stress o is a spatially uniform function of only the time ¢. Then
we could solve for variations of P!, 0, %, and 6 as functions
of y and ¢, and look for instabilities in which the plastic strain
rate becomes localized in a band near some position along the
y axis. This model still does not include the shape changes
and stress concentrations that were centrally important in the
study of fracture toughness in metallic glasses by Rycroft and
Bouchbinder [16]. However, even this simplified model seems
to me to be more complicated than is needed here in order to
gain a first understanding of what is happening.

Suppose that our strip consists of just two parallel zones,
one occupying the region 0 < y < o W and the other occupy-
inga W < y < W. Denote these zones by the index n = 0, 1.
The total strain rate is € = vy / W. With the time ¢ replaced
by total strain € as the independent variable, and Q = 1 €, the
condition of continuity at y = o W becomes an equation of
motion for the spatially uniform stress:

do q0 q1
——=ull—a=—-q —, 4.1
Te [ o 0 ( ) Q} 4.1)
where
1 _
Gn = \/,57,1exp |:— G—e_"/”r(p"):| 4.2)
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and
or(Bn) = W1 v/ Bus Bn = b - (4.3)
Equation (3.2) becomes
d ~n n ~f’l
Pr oy 29 _ P (4.4)
de v2ur O e/
Here,
| .
v = a/or(Fy) = In (9—) —In [m (ﬁ)]. (4.5)
h 4n

The prefactor in Eq. (4.4), proportional to k|, was shown in
[1,2] to be the value of «, in Eq. (3.2) needed to describe the
onset of hardening. «; is a dimensionless constant of the order
of unity. Equation (3.3), the equation of motion for ¥, becomes

dJn O G [ Xn ]
=K - =1,
de ur Q Xss
where « is a dimensionless constant inversely proportional to
ceff, and also of the order of unity.

It remains to write equations of motion for the temperatures

6,,.. For the two-zone model, these have the form

(4.6)

o _ g o0 Ko o Ko

=K 0 + 0 (61 — 6o) 0 6o —06a) (47
and

a _ e oam K, o Ko

The first terms on the right-hand sides of these equations are
the rates at which heat is generated in the two zones. The
factors u}l have been inserted for dimensional consistency.
Following standard practice in this field (for example, see
[13,14]), T have assumed that the rate of heat generation
is simply proportional to the applied power, and I have
not tried to estimate the y-dependent rate at which heat is
transferred between the configurational and kinetic-vibrational
subsystems. The second terms on the right-hand sides of
Egs. (4.7) and (4.8) are the rates at which heat flows between
the zones. The last terms are the rates at which the zone
temperatures relax toward the ambient temperature 7, where
0, =T,/Tp.

Solutions of these equations are shown here in Figs. 1-5
for the same two cases of room-temperature Cu whose stress-
strain curves are shown in [1], Fig. 2. The only difference
between these two cases is that they are measurements at very
different strain rates, ¢ = 0.002 and 2000 s~!; I use them to
explore the strain-rate dependence of the banding instability.
Apart from the thermal coefficients K, K1, and K; in Egs. (4.7)
and (4.8), all material parameters are the same as in [1]: Tp =
40800 K and 7, = 298 K, which is also the initial temperature
for both zones; ur = 1600 MPa; u = 31ur; %ss = 0.25; 19 =
107254 = 11.2;and k; = 3.1. I have arbitrarily chosen K =
0.01 and K| = K> = 107 (s0 as to be roughly comparable in
magnitude to the larger values of Q). The initial value of g, is
107> in all cases. To trigger an instability, I have used slightly
different initial values of j for the two zones, specifically 0.16
for zone 0 and 0.18 for zone 1. Finally,  have chosen o« = 0.05,
so that zone 0 is very narrow. It is the zone that becomes a shear
band at the higher strain rate.
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FIG. 1. Stress vs strain for the small strain rate, ¢ = 0.002 s~!.
The open circles are the experimental points shown in [1], Fig. 2.

At the smaller strain rate for which results are shown in
Figs. 1 and 2, there is no indication of any shear-banding insta-
bility. The stress-strain curve in Fig. 1 is indistinguishable from
the experimental data in the initial hardening regime. Figure 2
shows that, after an initial transient in the relative strain rate
qo(€)/ Q for the narrow zone, the strain rate becomes uniform
across the system. The heat flow described by the second and
third terms on the right-hand sides of Eqs. (4.7) and (4.8) is
fast enough to quench the instability. The temperatures of both
zones remain at their initial values throughout the process.

The fast system described in Figs. 3-5 is more interesting.
The stress-strain curve in Fig. 3 looks similar to curves of this
kind shown by Rittel [13,14]. It has a smooth peak at € = 0.5
where an instability sets in, and a sharper drop ate = 1.3 where
the system “breaks” in the sense that, as seen in Fig. 4, almost
all of the strain rate is suddenly shifted to the narrow zone
0. The zone temperatures shown in Fig. 5 become distinctly
different from each other as this happens. Note, however, that
this thermal effect sets in at € = 0.7, well before the band
forms. Whether or not this thermal precursor is related to the
early occurrence of DRX remains to be seen.

The functions g, (€) and %, (¢) rise monotonically from their
initial to their steady-state values with no apparent structure;
therefore, I have not shown them here.

Relative Strain Rate q/Q

0.4 0.6 0.8 1.0

Strain e

FIG. 2. Relative strain rates g,/Q for ¢ = 0.002s~'. The upper
solid red curve is for the narrow zone 0; the lower dashed black curve
is for zone 1. The fractional width of the narrow zone is o = 0.05.
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FIG. 3. Stress vs strain for the large strain rate ¢ = 2000 s~'. The
open circles are the experimental points shown in [1], Fig. 2.

The results of these numerical experiments reflect the non-
linear nature of the thermal softening instability governed by
the preceding equations, especially by the strong 6 dependence
of the strain rate shown in Eqgs. (3.8) and (4.2). For example,
using the same material parameters and initial conditions,
and varying the imposed strain rate, I find numerically the
first signs of the instability appearing at ¢ = 560 s~!. Here,
however, shear localization sets in very slowly and does
not occur visibly until the system has reached a strain of
about € = 26, far larger than would be observed in realistic
experiments. The onset of instability is also quite sensitive
to small changes in other parameters, especially the thermal
transport coefficients K, K, and K,. However, I see no reason
to think that a mathematically sharp instability occurs at any
nonzero strain rate.

The most serious weakness of this toy model is that it does
not tell us what physical mechanisms determine the width or
structure of shear bands. The bandwidth & must be chosen
a priori and, as used here, plays no role in determining the
heat flow between the band and the neighboring material. The
latter problem might be remedied by going to a continuum
description of the spatial dependence of the internal variables,

20[
15

10}

Relative Strain Rate q/Q

Strain e

FIG. 4. Relative strain rates g,/Q for é = 2000 s~!. The upper
solid red curve is for the narrow zone 0; the lower dashed black curve
is for zone 1. The fractional width of the narrow zone is « = 0.05; thus
the fact that ¢/ Q — 20 for this zone means that it carries essentially
all of the strain rate after the band forms.
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FIG. 5. Temperature T vs strain for ¢ = 2000 s~!. The upper
solid red curve is for the narrow zone 0; the lower dashed black curve
is for zone 1.

in analogy to the calculations of Manning et al. [15] for
amorphous systems. Such an analysis may be a next step in
this project.

V. CONCLUDING REMARKS

The dislocation theory presented here, unlike much of the
conventional literature in this field, is fully consistent with the
laws of thermodynamics and basic physical principles of sym-
metry, energy conservation, and the like. It is couched in terms
of properly defined state variables, as discussed in [4]. For ex-
ample, it does not artificially distinguish between “mobile” and
“immobile” dislocations, nor does it use a plastic strain field
and its associated reference state as if these were physically
meaningful concepts in irreversible systems. It is much simpler
than conventional theories, consisting of just a few equations of
motion and a comparably small number of physically meaning-
ful, material-specific parameters. There are no phenomenolog-
ical power-law fits to experimental data. And yet, this theory
has proven capable of explaining quantitatively a broad range
of previously unexplained behaviors, as described in [1,2].

In my opinion, the main weakness of this simple theory,
so far, is that it is foo simple. It seems essential to find
its limits of validity. One way to do that will be to repeat
the analyses of [1,2] using other sets of experimental data,
measured for different kinds of materials under different
driving conditions. Clear discrepancies will indicate missing or
incorrect theoretical ingredients. A strategy especially relevant
to the present paper would be to use the Rycroft-Bouchbinder
techniques [16] with this dislocation theory to compute
fracture toughness, or to look in detail at Rittel’s observations
[13,14], but that strategy would have to be coordinated with
new experimental observations.

More generally, we need to explore the ways in which
this theory is, or is not, able to interpret collective dy-
namic behaviors of dislocations, such as those described
in the monumental review by Ananthakrishna [17]. In his
presentation, Ananthakrishna is always careful to couch his
mathematics in terms of physically well-defined state variables
(e.g., dislocation densities), and he uses those variables in
statistically sensible Langevin or Fokker-Planck equations.
In my opinion, he does not take the concept of entropy
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seriously enough, and therefore he runs into trouble evaluating
the noise strengths that necessarily enter those formulations.
Nevertheless, his discussions of various kinds of slip bands and
propagating modes such as the Portevin—Le Chatelier effect
seem to me to be very interesting. They may lie outside the
range of the present theory. If so, I would very much like to
understand why.

PHYSICAL REVIEW E 94, 063004 (2016)

ACKNOWLEDGMENTS

This research was supported in part by the US Department
of Energy, Office of Basic Energy Sciences, Materials Science
and Engineering Division, Contract No. DE-ACO05-000R-
22725, through a subcontract from Oak Ridge National
Laboratory.

[1] J. S. Langer, E. Bouchbinder, and T. Lookman, Acta Mat. 58,
3718 (2010).

[2] J. S. Langer, Phys. Rev. E 92, 032125 (2015).

[3] M. L. Falk and J. S. Langer, Annu. Rev. Condens. Matter Phys.
2,353 (2011).

[4] E. Bouchbinder and J. S. Langer, Phys. Rev. E 80, 031131
(2009).

[5]1 R. W. Armstrong, W. Arnold, and F. J. Zerilli, J. Appl. Phys.
105, 1 (2009).

[6] G.T. Gray III, Annu. Rev. Mater. Res. 42, 285 (2012).

[7] P. S. Follansbee and U. F. Kocks, Acta Metall. 36, 81
(1988).

[8] D. L. Preston, D. L. Tonks, and D. C. Wallace, J. Appl. Phys.
93, 211 (2003).

[9] U. F. Kocks and H. Mecking, Prog. Mater. Sci. 48, 171
(2003).

[10] A. H. Cottrell, in Dislocations in Solids, edited by F. R. N.
Nabarro and M. S. Duesbery (Elsevier, Amsterdam, 2002),
Vol. 11, p. vii.

[11] T. W. Wright, The Physics and Mathematics of Adiabatic Shear
Bands (Cambridge University Press, Cambridge, 2002).

[12] Adiabatic Shear Localization, Frontiers and Advances, edited
by B. Dodd and Y. Bai (Elsevier, London, 2012).

[13] P. Landau, A. Venkert, and D. Rittel, Metall. Mater. Trans. A 41,
389 (2010).

[14] S. Osovski, Y. Nahmany, D. Rittel, P. Landau, and A. Venkert,
Scr. Mater. 67, 693 (2012).

[15] M. L. Manning, J. S. Langer, and J. M. Carlson, Phys. Rev. E
76, 056106 (2007).

[16] C. H. Rycroft and E. Bouchbinder, Phys. Rev. Lett. 109, 194301
(2012).

[17] G. Ananthakrishna, Phys. Rep. 440, 113 (2007).

063004-7


https://doi.org/10.1016/j.actamat.2010.03.009
https://doi.org/10.1016/j.actamat.2010.03.009
https://doi.org/10.1016/j.actamat.2010.03.009
https://doi.org/10.1016/j.actamat.2010.03.009
https://doi.org/10.1103/PhysRevE.92.032125
https://doi.org/10.1103/PhysRevE.92.032125
https://doi.org/10.1103/PhysRevE.92.032125
https://doi.org/10.1103/PhysRevE.92.032125
https://doi.org/10.1146/annurev-conmatphys-062910-140452
https://doi.org/10.1146/annurev-conmatphys-062910-140452
https://doi.org/10.1146/annurev-conmatphys-062910-140452
https://doi.org/10.1146/annurev-conmatphys-062910-140452
https://doi.org/10.1103/PhysRevE.80.031131
https://doi.org/10.1103/PhysRevE.80.031131
https://doi.org/10.1103/PhysRevE.80.031131
https://doi.org/10.1103/PhysRevE.80.031131
https://doi.org/10.1063/1.3067764
https://doi.org/10.1063/1.3067764
https://doi.org/10.1063/1.3067764
https://doi.org/10.1063/1.3067764
https://doi.org/10.1146/annurev-matsci-070511-155034
https://doi.org/10.1146/annurev-matsci-070511-155034
https://doi.org/10.1146/annurev-matsci-070511-155034
https://doi.org/10.1146/annurev-matsci-070511-155034
https://doi.org/10.1016/0001-6160(88)90030-2
https://doi.org/10.1016/0001-6160(88)90030-2
https://doi.org/10.1016/0001-6160(88)90030-2
https://doi.org/10.1016/0001-6160(88)90030-2
https://doi.org/10.1063/1.1524706
https://doi.org/10.1063/1.1524706
https://doi.org/10.1063/1.1524706
https://doi.org/10.1063/1.1524706
https://doi.org/10.1016/S0079-6425(02)00003-8
https://doi.org/10.1016/S0079-6425(02)00003-8
https://doi.org/10.1016/S0079-6425(02)00003-8
https://doi.org/10.1016/S0079-6425(02)00003-8
https://doi.org/10.1007/s11661-009-0098-5
https://doi.org/10.1007/s11661-009-0098-5
https://doi.org/10.1007/s11661-009-0098-5
https://doi.org/10.1007/s11661-009-0098-5
https://doi.org/10.1016/j.scriptamat.2012.07.001
https://doi.org/10.1016/j.scriptamat.2012.07.001
https://doi.org/10.1016/j.scriptamat.2012.07.001
https://doi.org/10.1016/j.scriptamat.2012.07.001
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevLett.109.194301
https://doi.org/10.1103/PhysRevLett.109.194301
https://doi.org/10.1103/PhysRevLett.109.194301
https://doi.org/10.1103/PhysRevLett.109.194301
https://doi.org/10.1016/j.physrep.2006.10.003
https://doi.org/10.1016/j.physrep.2006.10.003
https://doi.org/10.1016/j.physrep.2006.10.003
https://doi.org/10.1016/j.physrep.2006.10.003



